玉溪招警

云南公务员 事业单位 教师招聘 银行招聘 农信社 国企 公选|遴选 国家公务员 医疗卫生 特岗教师 教师资格 三支一扶 招警 更多

您现在的位置:首页 > 招警 > 阅读资料 >

2018国考公安考试行测答题技巧:数量关系技巧之“隔板模型”

2017-08-24 21:20:58| 来源:中公教育
\玉溪事业单位考试QQ交流群:452602481 玉溪中公教育微信公众号【yxzgjy】

排列组合问题一直以来是我们招警行测中的重点,通常联系实际,生动有趣,题型多样,思路灵活,不易掌握。而云南中公招警考试网专家在本文中重点讲解排列组合中的错位重排模型,模型解法简单易懂,只要记住对应数字就能够快速解决这一问题。

本质:相同元素的不同分堆。公式:把 n 个相同元素分给 m 个不同的对象,每个对象至少 1 个元素,问有多少种不同分法的问题可以采用“隔板法”,共有C n-1 m-1 种。

条件:这类问题模型适用前提相当严格,必须同时满足以下 3 个条件:

(1)所要分的元素必须完全相同;(2)所要分的元素必须分完,决不允许有剩余;(3)每个对象至少分到 1 个,决不允许出现分不到元素的对象。

例题展示:如10 个相同的小球,放入 4 个不同的盒子里面,每个盒子至少要放一个球。问有几种放法?10个球中间有9个空放入3个隔板(隔板是相同而不可以区分的),那么就可以分成4堆了,故要求的方法数就是C93种。

以下通过两个例题来展示隔板模型的两个变形,如何进行公式的套用。

【变形1】n 个相同元素分成 m 份,每份至少多个元素。

将 8 个完全相同的球放到 3 个编号分别为 1、2、3 的盒子中,要求每个盒子中放的球数不少于自身的编号,则一共有多少种方法?

A.4 B.5 C.6 D.7

【答案】C

【中公解析】此题中没有要求每个盒子中至少放一个球,而都是至少多个的,因此首先需要做的是转化成把 n 个相同元素分成 m 份,每份至少 1 个元素,问有多少种不同分法的问题。故分两步进行,第一步先给 2 号盒子 1 个球,3 号盒子 2 个球,因为球一样,故给法只有1种;第二步,此时剩下 5 个球,只需要“每个盒子至少放一个球”即可,应用隔板法,方法数为C42 =6,则总的个数为1×6=6种。

【变形2】n 个相同元素分成 m 份,随意分。

王老师要将20个一模一样的笔记本分给3个不同的学生, 允许有学生没有拿到, 但必须放完,有多少种不同的方法?

A.190 B.231 C.680 D.1140

【答案】B。

【中公解析】这道题中说每个盒子可以为空,即至少0个,不能直接用隔板法来做,因此首先需要做的是转化成把 n 个相同元素分成 m 份,每份至少 1 个元素,问有多少种不同分法的问题。故分两步进行,第一步先每个人借3个相同的本子,因为球一样,故给法只有1种;第二步,即此题变为将 23 个相同的书全放入 3 个人,每个人至少一个球,此时就可以用隔板法了,则有C222=231 种,则总的个数为1×231=231种。

中公教育专家认为,备考有效方法是题型与解法归类、识别模式、熟练运用。要破解隔板模型的排列组合题,关键就是在于理解题目含义,找到题干的变形条件进行适当转化,从而与标准模型对应起来,从而根据公式快速求解!

更多相关信息请关注:玉溪人才网   玉溪事业单位考试网

 注:本站稿件未经许可不得转载,转载请保留出处及源文件地址。
(责任编辑:玉溪中公教育_渣渣辉)
关键词阅读 招警考试

免责声明:本站所提供试题均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除